Objective/background: Aim of the current study was to localize and differentiate between tumor (glioma) and healthy tissue in rat brains on a cellular level. Near-infrared multiphoton microscopy takes advantage of the simultaneous absorption of two or more photons to analyze various materials such as cell and tissue components via the observation of endogenous fluorophores such as NAD(P)H, FAD, porphyrins, melanin, elastin, and collagen, with a very high resolution, without inducing the problems of photo-bleaching on out-of-focus areas.
Methods: In vitro and in vivo studies on healthy rat brains as well as C6 glioma cell line allografts have been performed. Near-infrared laser pulses (λ = 690-1060 nm, τ ~140 fs) generated by an ultrafast Ti:Sapphire tunable laser system (Chameleon, Coherent GmbH, Santa Clara, CA) were coupled into a laser scanning microscope (LSM 510 META, Carl Zeiss, Germany) to observe high quality images.
Results: Several image acquisitions have been performed by varying the zoom scale of the multiphoton microscope, image acquisition time and the wavelength (765, 840 nm) to detect various tissue components. With a penetration depth of ~200 µm in vitro and about 30-60 µm in vivo into the brain tissue it was possible to differentiate between tumor and healthy brain tissue even through thin layers of blood.
Conclusion: Near-infrared multiphoton microscopy allows the observation and possibly differentiation between tumor (glioma) and healthy tissue in rat brains on a cellular level. Our findings suggest that a further miniaturization of this technology might be very useful for scientific and clinical applications in neurosurgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lsm.22079 | DOI Listing |
Photosynth Res
January 2025
State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.
View Article and Find Full Text PDFACS Photonics
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States.
Decoding the principles underlying neuronal information processing necessitates the emergence of techniques and methodologies to monitor multiscale brain networks in behaving animals over long periods of time. Novel advances in biophotonics, specifically progress in multiphoton microscopy, combined with the development of optical indicators for neuronal activity have provided the possibility to concurrently track brain functions at scales ranging from individual neurons to thousands of neurons across connected brain regions. This Review presents state-of-the-art multiphoton imaging modalities and optical indicators for in vivo brain imaging, highlighting recent advancements and current challenges in the field.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG) Royal College of Surgeons Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland.
According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!