p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β.

J Cell Physiol

Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Published: April 2013

Epithelial plasticity characterizes embryonic development and diseases such as cancer. Epithelial-mesenchymal transition (EMT) is a reversible and guided process of plasticity whereby embryonic or adult epithelia acquire mesenchymal properties. Multiple signaling pathways control EMT, and the transforming growth factor β (TGFβ) pathway plays a central role as its inducer. Here, we analyzed the role of the tumor suppressor protein p53 in TGFβ-induced EMT in a well-established mammary epithelial cell model. We found that diploid NMuMG mammary cells bi-allelically express a wild type and a missense mutant (R277C) form of p53. Global reduction of both forms of p53 led to an enhanced EMT response to TGFβ. Conversely, stabilization of wild type p53 using the compound nutlin had a negative impact on EMT. After silencing both p53 forms, rescue experiments using either wild type or R277C mutant p53 revealed that wild type p53 inhibited, whereas the R277C mutant did not significantly affect, the TGFβ-driven EMT response. Under serum-free culture conditions, silencing of total p53 levels led to higher numbers of mammospheres characterized by larger size. Rescue of the silenced endogenous p53 with R277C mutant p53, in contrast, suppressed both size and numbers of the mammospheres. This work proposes that wild type p53 controls the efficiency by which mammary epithelial cells undergo EMT in response to TGFβ.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24229DOI Listing

Publication Analysis

Top Keywords

wild type
20
p53
12
emt response
12
type p53
12
r277c mutant
12
epithelial-mesenchymal transition
8
transforming growth
8
growth factor
8
mammary epithelial
8
response tgfβ
8

Similar Publications

Intein-mediated split Cas9 for genome editing in plants.

Front Genome Ed

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia, China.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the transcript into two segments (Split-v1) and three segments (Split-v3).

View Article and Find Full Text PDF

Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.

View Article and Find Full Text PDF

Lutropin/choriogonadotropin receptor (LH/CGR) is a member of the G protein-coupled receptor superfamily. LH/CGRs in fish and mammalian species have been reported to contain naturally occurring, constitutively activating, and inactivating mutations in highly conserved regions. The present study was designed to determine the functional aspect of eel LH/CGR signal transduction.

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.

Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.

Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!