Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Group B streptococci (GBS; Streptococcus agalactiae) are a major cause of invasive infections in newborn infants and in patients with type 2 diabetes. Both patient groups exhibit peripheral insulin resistance and alterations in polymorphonuclear leukocyte (PML) function. In this investigation, we studied the PML response repertoire to GBS with a focus on TLR signaling and the modulation of this response by insulin in mice and humans. We found that GBS-induced, MyD88-dependent chemokine formation of PML was specifically downmodulated by insulin via insulin receptor-mediated induction of PI3K. PI3K inhibited transcription of chemokine genes on the level of NF-κB activation and binding. Insulin specifically modulated the chemokine response of PML to whole bacteria, but affected neither activation by purified TLR agonists nor antimicrobial properties, such as migration, phagocytosis, bacterial killing, and formation of reactive oxygen species. The targeted modulation of bacteria-induced chemokine formation by insulin via PI3K may form a basis for the development of novel targets of adjunctive sepsis therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417076 | PMC |
http://dx.doi.org/10.4049/jimmunol.1200205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!