There is an emerging link between extracellular copper concentration and the uptake of cisplatin mediated by copper transporter CTR1 in cell cultures and unicellular eukaryotes. To test the link between extracellular copper level and cisplatin uptake by organs in vivo we used mice with low copper status parameters induced by AgCl-containing diet (Ag-mice). In Ag-mice, serum copper status and liver copper metabolism were characterized. It was shown that the expression level of copper transporter genes and activity of ubiquitous intracellular cuproenzymes were not affected but the level of serum holo-ceruloplasmin was not detectable. Silver was selectively absorbed by liver and accumulated in the mitochondrial matrix. Silver was present in an exchangeable form and was excreted through bile. Ag-mice model is characterized by high reproducibility, reversibility, synchronicity, and definiteness of ceruloplasmin-associated copper deficiency. After cisplatin treatment Ag-mice, as compared to control mice, demonstrated the delay in platinum uptake by organs during first 30 min. This effect was not observed at later time points probably due to cisplatin induced copper release to blood, which resulted in the recovery of copper status. These data allowed us to conclude that cisplatin uptake was coupled to copper transport in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2012.07.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!