Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen that has diverse molecular heterogeneity. Most MRSA strains in the United States are pulsed-field gel electrophoresis USA100 sequence type (ST) 5 and USA300 ST8. Infections with MRSA ST239-III are common and found during health care-associated outbreaks. However, this strain has been rarely reported in the United States. As part of a study supported by the Prevention Epicenter Program of the Centers for Disease Control and Prevention (Atlanta, GA, USA), which evaluated transmission of MRSA among hospitals in Ohio, molecular typing identified 78 (6%) of 1,286 patients with MRSA ST239-III infections. Ninety-five percent (74/78) of these infections were health care associated, and 65% (51/78) of patients had histories of invasive device use. The crude case-fatality rate was 22% (17/78). Identification of these strains, which belong to a virulent clonal group, emphasizes the need for molecular surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471631PMC
http://dx.doi.org/10.3201/eid1810.120468DOI Listing

Publication Analysis

Top Keywords

methicillin-resistant staphylococcus
8
staphylococcus aureus
8
sequence type
8
united states
8
mrsa st239-iii
8
mrsa
5
aureus sequence
4
type 239-iii
4
239-iii ohio
4
ohio usa
4

Similar Publications

Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

is a predominant cause of post-operative surgical site infections and persistent bacteremia. Here, we describe a patient who experienced three episodes of infection over a period of 4 months following a total knee arthroplasty. The initial bloodstream isolate (SAB-0429) was a clonal complex 5 (CC5) and methicillin-resistant (MRSA), whereas two subsequent isolates (SAB-0485 and SAB-0495) were CC5 isolates but methicillin-sensitive .

View Article and Find Full Text PDF

Population pharmacokinetics and pulmonary modeling of eravacycline and the determination of microbiological breakpoint and cutoff of PK/PD.

Antimicrob Agents Chemother

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.

Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Peatlands are unique ecosystems rich in microbial diversity, including bacteria with potential antibiotic activity. This study focuses on the isolation and characterization of bacteria from Indonesian peat soil, particularly their potential to produce antibiotics against multidrug-resistant (MDR) pathogens, including Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). <b>Materials and Methods:</b> Bacterial isolates were rejuvenated on nutrient agar and subjected to antimicrobial activity testing using the Bauer & Kirby diffusion method against MRSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!