Accurate species circumscriptions are central for many biological disciplines and have critical implications for ecological and conservation studies. An increasing body of evidence suggests that in some cases traditional morphology-based taxonomy have underestimated diversity in lichen-forming fungi. Therefore, genetic data play an increasing role for recognizing distinct lineages of lichenized fungi that it would otherwise be improbable to recognize using classical phenotypic characters. Melanohalea (Parmeliaceae, Ascomycota) is one of the most widespread and common lichen-forming genera in the northern Hemisphere. In this study, we assess traditional phenotype-based species boundaries, identify previously unrecognized species-level lineages and discuss biogeographic patterns in Melanohalea. We sampled 487 individuals worldwide, representing 18 of the 22 described Melanohalea species, and generated DNA sequence data from mitochondrial, nuclear ribosomal, and protein-coding markers. Diversity previously hidden within traditional species was identified using a genealogical concordance approach. We inferred relationships among sampled species-level lineages within Melanohalea using both concatenated phylogenetic methods and a coalescent-based multilocus species tree approach. Although lineages identified from genetic data are largely congruent with traditional taxonomy, we found strong evidence supporting the presence of previously unrecognized species in six of the 18 sampled taxa. Strong nodal support and overall congruence among independent loci suggest long-term reproductive isolation among most species-level lineages. While some Melanohalea taxa are truly widespread, a limited number of clades appear to have much more restricted distributional ranges. In most instances the concatenated gene tree and multilocus species tree approaches provided similar estimates of relationships. However, nodal support was generally higher in the phylogeny estimated from concatenated data, and relationships among taxa within one major clade were largely unresolved in the species tree. This study contributes to our understanding of diversity and evolution in common lichen-forming fungi by incorporating multiple locus sequence data to circumscribe morphologicallly cryptic lineages and infer relationships within a coalescent-based species tree approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2012.09.013DOI Listing

Publication Analysis

Top Keywords

species tree
20
species-level lineages
12
species
10
melanohalea parmeliaceae
8
parmeliaceae ascomycota
8
lichen-forming fungi
8
genetic data
8
common lichen-forming
8
sequence data
8
lineages melanohalea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!