S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787734 | PMC |
http://dx.doi.org/10.1016/j.bbadis.2012.09.007 | DOI Listing |
Mol Syndromol
December 2024
Department of Medical Genetics, University of Health Sciences, Van Training and Research Hospital, Van, Turkey.
Introduction: S-adenosylhomocysteine hydrolase (SAHH) is one of the enzymes involved in converting methionine to homocysteine with transmethylation processes. Methyltransfer reactions are impaired in SAHH deficiency. SAHH deficiency is multisystemic and antenatal onset disorder.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Neutron Therapy Research Center, Okayama University, Okayama, Japan. Electronic address:
Increased fragmentation of sperm DNA has been implicated in male infertility. Folate deficiency results in impaired methionine synthesis, depletion of S-adenosylmethionine (SAM) levels, an increase in S-adenosyl-l-homocysteine (SAH) levels, and increased DNA fragmentation. Disruption of the dynamic balance between SAM and SAH may also contribute, although the details of this process are not yet fully understood.
View Article and Find Full Text PDFActa Naturae
January 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation.
Comput Biol Med
January 2025
Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India; Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India. Electronic address:
MTAN is an attainable therapeutic target for H. pylori because it may minimize virulence production, limit resistance, and impair quorum sensing without affecting gut flora. Here, 457 compounds with anti-H.
View Article and Find Full Text PDFJIMD Rep
November 2024
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!