Fibrillar amyloid plaques are largely composed of amyloid-beta (Aβ) peptides that are metabolized into products, including Aβ1-16, by proteases including matrix metalloproteinase 9 (MMP-9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP-9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)-1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP-9/TIMP-1 balance. We show NO-mediated increased MMP-9/TIMP-1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP-9 protein translation. The in vivo relationship between MMP-9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP-9 mediated changes, we generated an antibody recognizing the Aβ1-16 fragment, and used mass spectrometry multi-reaction monitoring assay for detection of immunoprecipitated Aβ1-16 peptides. Aβ1-16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP-1 increased in the APPSwDI/NOS2(-/-) mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614913PMC
http://dx.doi.org/10.1111/jnc.12028DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
alzheimer's disease
8
lacking nos2
8
amyloid
5
mmp-9
5
nos2
5
nitric oxide-mediated
4
regulation
4
oxide-mediated regulation
4
regulation β-amyloid
4

Similar Publications

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Nocturnal polyuria is a major cause of nocturia, which affects quality of life. Aging-related decreases in nitric oxide production have been reported to contribute to salt-induced nocturnal polyuria. We posited that enhanced nitric oxide production from exercise could mitigate salt-induced nocturnal polyuria.

View Article and Find Full Text PDF

Inflammation-associated perturbations of the gut microbiome are well characterized, but poorly understood. Here, we demonstrate that disparate taxa recapitulate the metabolism of the oxidized sugars glucarate and galactarate, utilizing enzymatically divergent, yet functionally equivalent, gud/gar pathways. The divergent pathway in commensals includes a putative 5-KDG aldolase (GudL) and an uncharacterized ABC transporter (GarABC) that recapitulate the function of their non-homologous counterparts in pathogens.

View Article and Find Full Text PDF

Nitric oxide (NO) positively contributes to maintaining a high photosynthetic rate in waterlogged-wheat plants by maintaining high stomatal conductance (g), mesophyll conductance (g), and electron transport rates in PSII (J). However, the molecular mechanisms underlying the synergistic regulation of photosynthetic characteristics during wheat waterlogging remain unclear. Pot experiments were conducted with two cultivars: Yangmai15 (YM15: high waterlogging-tolerance capacity) and Yangmai24 (YM24: conventional waterlogging-tolerance capacity).

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!