Novel inhibitors of inosine monophosphate dehydrogenase in patent literature of the last decade.

Recent Pat Anticancer Drug Discov

School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino (MC), Italy.

Published: May 2013

Inosine monophosphate dehydrogenase (IMPDH), an NAD-dependent enzyme that controls de novo synthesis of guanine nucleotides, has received considerable interest in recent years as an important target enzyme, not only for the discovery of anticancer drugs, but also for antiviral, antiparasitic, and immunosuppressive chemotherapy. The field of IMPDH inhibitor research is highly important for providing potential therapeutics against a validated target for disease intervention. This patent review examines the chemical structures and biological activities of recently reported IMPDH inhibitors. Patent databases SciFinder and Espacenet and Delphion were used to locate patent applications that were published between January 2002 and July 2012, claiming chemical structures for use as IMPDH inhibitors. From 2002 to 2012, around 47 primary patent applications have claimed IMPDH inhibitors, which we analyzed by target and applicant. The level of newly published patent applications covering IMPDH inhibitors remains high and a diverse range of scaffolds has been claimed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

impdh inhibitors
16
patent applications
12
inosine monophosphate
8
monophosphate dehydrogenase
8
chemical structures
8
patent
6
impdh
6
novel inhibitors
4
inhibitors inosine
4
dehydrogenase patent
4

Similar Publications

Nucleic acid metabolism: the key therapeutic target for myeloid tumors.

Exp Hematol

December 2024

Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan. Electronic address:

Nucleic acid analogs, including cytarabine, decitabine, and azacitidine, have significantly advanced therapeutic approaches for myeloid tumors over the past five decades. Nucleic acid metabolism is a crucial pathway driving myeloid tumorigenesis, with emerging evidence indicating that myeloid tumors are particularly dependent on the de novo nucleotide synthesis pathway, underscoring its potential as a therapeutic target. This review provides a comprehensive overview of nucleic acid metabolism, focusing on de novo nucleotide synthesis.

View Article and Find Full Text PDF

IMPDH inhibitors upregulate PD-L1 in cancer cells without impairing immune checkpoint inhibitor efficacy.

Acta Pharmacol Sin

November 2024

Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Tumor cells are characterized by rapid proliferation. In order to provide purines for DNA and RNA synthesis, inosine 5'-monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo guanosine biosynthesis, is highly expressed in tumor cells. In this study we investigated whether IMPDH was involved in cancer immunoregulation.

View Article and Find Full Text PDF

Objective: Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue.

View Article and Find Full Text PDF

's inosine-5'-monophosphate dehydrogenase (IMPDH, GuaB encoded by the gene) is a potential therapeutic target. GuaB is necessary for replication in mammalian hosts but not in standard laboratory culture conditions. Therefore, we cannot test novel GuaB inhibitors against without utilizing mammalian infection models.

View Article and Find Full Text PDF

Synthesis, evaluation and mechanistic insights of novel IMPDH inhibitors targeting ESKAPEE bacteria.

Eur J Med Chem

December 2024

School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland. Electronic address:

Antimicrobial resistance poses a significant threat to global health, necessitating the development of novel therapeutic agents with unique mechanisms of action. Inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme in guanine nucleotide biosynthesis, is a promising target for the discovery of new antimicrobial agents. High-throughput screening studies have previously identified several urea-based leads as potential inhibitors, although many of these are characterised by reduced chemical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!