Magnetic nanoparticles for MRI of brain tumors.

Curr Pharm Biotechnol

Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA.

Published: September 2012

Despite advances in surgery and drug discovery, brain tumors remain fatal diseases. Early detection and diagnosis of brain tumors is of great importance for improving treatment outcomes. Magnetic resonance imaging (MRI) is a prominent, clinically-relevant imaging modality because of its excellent tissue contrast resolution, direct multiplanar imaging and increased sensitivity to edema. MRI utility is further enhanced with the use of magnetic iron oxide nanoparticles, which can function as both a contrast agent for imaging and as a drug delivery vehicle for treating brain cancer. In this review, the principles of various imaging modalities for brain tumors are discussed with focus on monocrystalline iron oxide nanoparticle (MION)-based MRI contrast agents. A summary is given on the mechanism of contrast effect, magnetophoretic mobility and magnetic retention, and strategies to enhance tumor selectivity, increase spatial resolution and reduce nonspecific uptake of MION.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920112803341824DOI Listing

Publication Analysis

Top Keywords

brain tumors
16
iron oxide
8
brain
5
imaging
5
magnetic
4
magnetic nanoparticles
4
mri
4
nanoparticles mri
4
mri brain
4
tumors
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Pediatric Brain Tumors in Western Kenya: Patient Outcomes and Healthcare Providers' Perspectives.

Pediatr Blood Cancer

January 2025

Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.

Background: Pediatric brain tumors are understudied compared to other pediatric malignancies in low- and middle-income countries. Care delivery is inherently dependent on collaboration between multiple departments. This study aimed to present baseline data of pediatric neuro-oncology care in Western Kenya and illustrate barriers and facilitators of multidisciplinary care.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!