In this study, a novel amphiphilic block copolymer biomaterial - poly (ethylene glycol)-poly (caprolactone) (PEG-PCL), was used to entrap norcantharidin (NCTD), taking advantage of self-assembly theory. Dialysis and volatilization dialysis were used to prepare copolymer micelles. Drug-loaded micelles were compared with blank micelles in terms of their particle diameter, morphology and IR spectral characteristics. The results revealed that there was no significant difference in respect of morphology and IR spectrum, but particle size differed. Drug-loaded micelles had a smaller particle size than blank micelles. Three important factors influencing particle size, the drug loading content (LC) and the drug entrapment efficiency (EE) of the NCTD-loaded micelles, were studied. The results indicated that the method of preparation and the type of organic solvent had a significant influence on the size of the micelles. LC and EE were greatly affected by the ratio of NCTD to copolymer. In vitro release of NCTD from the conjugate micelles showed that its release rate depended on the pH of the phosphate buffer solution (PBS). The amount released was higher at lower pH than under neutral conditions. In vitro antitumor activity of the NCTD conjugate against human hepatoma (HepG2) cell line and human lung cancer (A549) cell line was evaluated by the MTT method. Micelles loaded with NCTD demonstrated greater and more satisfactory cell viability inhibition than the free drug. In vivo antitumor activity of drug-loaded micelles was investigated in mice bearing S180 mouse sarcoma. NCTD-loaded micelles displayed tumor inhibition effects, better than the free drug. As a new drug delivery system, copolymer micelles present many advantages including easy formulation, good water solubility, low toxicity and high treatment efficacy, and show great potential as carriers of hydrophobic drugs.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Medicine, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada. Electronic address:
Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:
Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD), and more abundant in intracellular vs. extracellular compartments. However, current immunotherapies are slow and ineffective at clearing intracellular tau aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!