In order to study the physiological mechanism of exogenous calcium on the toxicity of heavy metal cadmium (Cd) to Wedelia trilobata hairy roots, the effects of Cd alone, and in combination with different concentrations of Ca on growth, contents of soluble protein and malondialdehyde (MDA), activities of superoxide dismutase (SOD) and peroxidase (POD), Cd2+ absorption in W. trilobata hairy roots were investigated. Cd concentrations lower than 50 micromol/L enhanced the growth of hairy roots, while concentrations higher than 100 micromol/L inhibited growth, making the branched roots short and small, and also turning the root tips brown, even black. In comparison with the control (0 micromol/L Cd), the soluble protein content in hairy roots was found to increase when cultured with 10-50 micromol/L Cd, and decrease when exposed to a cadmium concentration higher than 100 micromol/L Cd. In addition, the activities of POD and SOD activity and MDA content were significantly higher than the control. Compared to the control (hairy roots cultured without 10-30 mmol/L Ca), 100 micromol/L Cd or 300 micromol/L Cd in combination with 10-30 mmol/L Ca resulted in increased growth, causing the main root and secondary roots thicker and also an increase in soluble protein content. On the contrary, MDA content and POD and SOD activities decreased. Quantitative analysis by Atomic Absorption Spectrophotometry showed that W. trilobata hairy roots can absorb and adsorb heavy metal Cd in the ionic form of Cd2+. The maximum content of Cd2+ absorbed by the hairy roots was obtained with a concentration 100 micromol/L Cd2+ while that of Cd2+ adsorbed by hairy roots was achieved with a concentration of 300 micromol/L Cd2+. The exogenous addition of 10-30 mmol/L Ca2+ was found to reduce the absorption, adsorption of Cd2+ and the toxicity of Cd significantly. This reduction in toxicity was caused by the reduction in the absorption of Cd and decreasing the lipid peroxidation through regulating the activities of antioxidant enzymes SOD and POD in the hairy roots.
Download full-text PDF |
Source |
---|
Plant Physiol Biochem
December 2024
College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
Phenolic compounds, such as stilbenes and flavonoids, from spp. exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and cytotoxicity properties. To this end, the objectives of this study were to establish hairy root cultures of and assess its capacity to produce these bioactive compounds.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.
Hairy roots mediated by Agrobacterium rhizogenes can be obtained from the composite plants (plants with hairy roots and untransformed aerial parts) by ex vitro method. Composite plants can produce higher amounts of secondary metabolites by merging hydroponic systems. This provides a stable condition for composite plants, in which various metabolites are produced in different parts.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Integrative Legume Research Group, School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia.
Hairy-root transformation is widely used to generate transgenic plant roots for genetic functional characterisation studies. However, transformation efficiency can be limited, largely due to the use of binary vectors. Here, we report on the development of novel integrative vectors that significantly increase the transformation efficiency of hairy roots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!