Membrane resistance increases when automaticity develops in explanted rat heart cells.

Am J Physiol

Département de Biophysique, Faculté de Médecine, Université de Sherbrooke, Quebec, Canada.

Published: January 1990

We compared the passive electrical properties of isolated ventricular myocytes (resting potential -65 mV, fast action potentials, and no spontaneous activity) with those of 2- to 7-day-old cultured ventricle cells from neonatal rats (resting potential -50 mV, slow action potentials, and presence of spontaneous activity). In myocytes the specific membrane capacity was 0.99 microF/cm2, and the specific membrane resistance increased from 2.46 k omega.cm2 at -65 mV to 7.30 k omega.cm2 at -30 mV. In clusters, the current-voltage relationships measured under current-clamp conditions showed anomalous rectification and the input resistance decreased from 1.05 to 0.48 M omega when external K+ concentration was increased from 6 to 100 mM. Using the model of a finite disk we determined the specific membrane resistance (12.9 k omega.cm2), the effective membrane capacity (17.8 microF/cm2), and the lumped resistivity of the disk interior (1,964 omega.cm). We conclude that 1) the voltage dependence of the specific membrane resistance cannot completely explain the membrane resistance increase that accompanies the appearance of spontaneous activity; 2) a decrease of the inwardly rectifying conductance (gk1) is mainly responsible for the increase in the specific membrane resistance and depolarization; and 3) approximately 41% of the inward-rectifying channels are electrically silent when spontaneous activity develops in explanted ventricle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1990.258.1.H145DOI Listing

Publication Analysis

Top Keywords

membrane resistance
24
specific membrane
20
spontaneous activity
16
membrane
8
develops explanted
8
resting potential
8
action potentials
8
ventricle cells
8
membrane capacity
8
resistance
6

Similar Publications

Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.

View Article and Find Full Text PDF

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

JACS Au

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements.

View Article and Find Full Text PDF

An extracellular vesicle based hypothesis for the genesis of the polycystic kidney diseases.

Extracell Vesicle

December 2024

The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).

View Article and Find Full Text PDF

Green Synthesis of Cellulose Acetate Mixed Matrix Membranes: Structure-Function Characterization.

ACS Sustain Chem Eng

January 2025

Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.

Although membrane technology is widely used in different gas separation applications, membrane manufacturers need to reduce the environmental impact during the membrane fabrication process within the framework of the circular economy by replacing toxic solvents, oil-based polymers, and such by more sustainable alternatives. These include environmentally friendly materials, such as biopolymers, green solvents, and surfactant free porous fillers. This work promotes the use of environmentally sustainable and low toxic alternatives, introducing the novel application of cellulose acetate (CA) as a biopolymer in combination with dimethyl carbonate (DMC) as a greener solvent and different inorganic fillers (Zeolite-A, ETS-10, AM-4 and ZIF-8) prepared without the use of toxic solvents or reactants.

View Article and Find Full Text PDF

Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.

Bioinorg Chem Appl

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. -[PtCl (NH)] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!