T-cell responses before and after the fifth consecutive acellular pertussis vaccination in 4-year-old Dutch children.

Clin Vaccine Immunol

Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, The Netherlands.

Published: November 2012

Immunization with acellular pertussis vaccine (aP) induces higher specific antibody levels and fewer adverse reactions than does immunization with the whole-cell vaccine (wP). However, antibody levels in infants induced by both types of pertussis vaccines wane already after 1 year. Therefore, long-term T-cell responses upon vaccination might play a role in protection against pertussis. In a cross-sectional study (ISRCTN65428640), we investigated T-helper (Th) cell immune responses in wP- or aP-vaccinated children before and after an aP low-dose or high-dose preschool booster at 4 years of age in The Netherlands. T cells were stimulated with pertussis vaccine antigens. The numbers of gamma interferon-producing cells and Th1, Th2, Th17, and interleukin-10 (IL-10) cytokine concentrations were determined. In addition, pertussis-specific IgE levels were measured in plasma. Children being vaccinated with aP vaccinations at 2, 3, 4, and 11 months of age still showed higher pertussis-specific T-cell responses at 4 years of age than did wP-vaccinated children. These T-cell responses failed to show a typical increase in cytokine production after a fifth aP vaccination but remained high after a low-dose booster and seemed to decline even after a high-dose booster. Importantly, elevated IgE levels were induced after this booster vaccination. In contrast, wP-vaccinated children had only low prebooster T-cell responses, and these children showed a clear postbooster T-cell memory response even after a low-dose booster vaccine. Four high-dose aP vaccinations in infancy induce high T-cell responses still present even 3 years after vaccination and enhanced IgE responses after preschool booster vaccination. Therefore, studies of changes in vaccine dosage, timing of pertussis (booster) vaccinations, and the possible association with local side effects are necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491542PMC
http://dx.doi.org/10.1128/CVI.00277-12DOI Listing

Publication Analysis

Top Keywords

t-cell responses
24
acellular pertussis
8
pertussis vaccine
8
antibody levels
8
preschool booster
8
years age
8
ige levels
8
responses years
8
wp-vaccinated children
8
low-dose booster
8

Similar Publications

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells.

Sci Adv

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells.

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!