Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and human vascular media. PRG-1 expression was strongly inhibited in proliferating compared with quiescent VSMCs both in vitro and in vivo (medial vs. neointimal VSMCs), suggesting that PRG-1 expression is dependent on the cell phenotype. In vitro, adenovirus-mediated overexpression of PRG-1 specifically inhibited LPA-induced rat VSMC proliferation and migration but not platelet-derived growth factor-induced proliferation. This effect was abolished by mutation of a conserved histidine in the lipid phosphate phosphatase family that is essential for interaction with lipid phosphates. In vivo, balloon-induced neointimal formation in rat carotid was significantly decreased in vessels infected with PRG-1 adenovirus compared with β-galactosidase adenovirus (-71%; P < 0.05). PRG-1 overexpression abolished the activation of the p42/p44 signaling pathway in LPA-stimulated rat VSMCs in culture and in balloon-injured rat carotids. Taken together, these findings provide the first evidence of a protective role of PRG-1 in the vascular media under pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00051.2012 | DOI Listing |
Aging Cell
January 2025
Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.
The C. elegans Argonaute protein PRG-1/Piwi and associated piRNAs protect metazoan genomes by silencing transposons and other types of foreign DNA. As prg-1 mutants are propagated, their fertility deteriorates prior to the onset of a reproductive arrest phenotype that resembles a starvation-induced stress response.
View Article and Find Full Text PDFDent Mater
August 2024
Department of Morphology, Orthodontics, and Pediatric Dentistry, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil. Electronic address:
Objectives: To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells.
Methods: An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface.
Mol Psychiatry
November 2024
Department of Neurology, Johannes Gutenberg-University Mainz, Mainz, Germany.
Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects.
View Article and Find Full Text PDFNucleic Acids Res
June 2024
Oncology Division, CHU de Québec-Université Laval Research Center, Québec, QC G1R 3S3, Canada.
MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs.
View Article and Find Full Text PDFNat Commun
March 2024
RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!