How the human brain reconstructs the three-dimensional (3D) world from two-dimensional (2D) retinal images has received a great deal of interest as has how we shift attention in 2D space. In contrast, it remains poorly understood how visuospatial attention is shifted in depth. In this fMRI study, by constructing a virtual 3D environment in the MR scanner and by presenting targets either close to or far from the participants in an adapted version of the Posner spatial-cueing paradigm, we investigated the behavioral and neural mechanisms underlying visuospatial orienting/reorienting in depth. At the behavioral level, although covering the same spatial distance, attentional reorienting to objects unexpectedly appearing closer to the observer and in the unattended hemispace was faster than reorienting to unexpected objects farther away. At the neural level, we found that in addition to the classical attentional reorienting system in the right temporoparietal junction, two additional brain networks were differentially involved in aspects of attentional reorienting in depth. First, bilateral premotor cortex reoriented visuospatial attention specifically along the third dimension of visual space (i.e., from close to far or vice versa), compared with attentional reorienting within the same depth plane. Second, a network of areas reminiscent of the human "default-mode network," including posterior cingulate cortex, orbital prefrontal cortex, and left angular gyrus, was involved in the neural interaction between depth and attentional orienting, by boosting attentional reorienting to unexpected objects appearing both closer to the observer and in the unattended hemispace.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621370 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1772-12.2012 | DOI Listing |
Narra J
December 2024
Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia.
Nephrotic syndrome, a multifaceted medical condition characterized by significant proteinuria, has recently prompted a reorientation of research efforts toward B-cell-mediated mechanisms. This shift underscores the pivotal role played by B-cells in its pathogenesis. The aim of this study was to explore potential therapeutic pathways, with specific attention given to compounds found in , including withanolides, such as physalins, which constitute one of the five distinct withanolide subgroups identified in .
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.
View Article and Find Full Text PDFDev Psychol
January 2025
Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine.
Individual differences in how the brain responds to novelty are present from infancy. A common method of studying novelty processing is through event-related potentials (ERPs). While ERPs possess millisecond precision, spatial resolution remains poor, especially in infancy.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK.
During early life, we develop the ability to choose what we focus on and what we ignore, allowing us to regulate perception and action in complex environments. But how does this change influence how we spontaneously allocate attention to real-world objects during free behaviour? Here, in this narrative review, we examine this question by considering the time dynamics of spontaneous overt visual attention, and how these develop through early life. Even in early childhood, visual attention shifts occur both periodically and aperiodically.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
The photoinduced molecular reorientation of liquid crystals (LCs) caused by their nonlinear optical responses has attracted much attention due to their large refractive index change, leading to promising applications in optical devices. This reorientation is typically induced by light irradiation above a threshold intensity and is temporary, with the initial orientation recovering unless the LCs are polymerized and cross-linked. Our report highlights the memory effect of molecular reorientation in LCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!