The use of high resolution, in vivo confocal imaging for noninvasive assessment of tissue pathology may offer a clinically important adjunct to standard histopathological techniques. To augment the present understanding of both the capabilities and limitations of in vivo confocal imaging, we investigated cellular sources of image contrast in amelanotic tissues, how contrast can be enhanced with external agents and how contrast is degraded by the scattering of overlying cells. A high-resolution reflected light confocal microscope was constructed and used to obtain images of various types of unstained amelanotic cells in suspension in real time before and after the addition of contrast agents. Reflectance images were compared to phase contrast images and electron micrographs to identify morphology visible with real time reflected light confocal microscopy. Mechanisms which decrease image contrast, including interference effects and scattering in overlying layers of cells, were considered. In amelanotic epithelial cells, fluctuations in the nuclear index of refraction provide signal which can be imaged even under several overlying cell layers. Acetic acid is an external contrast agent which can enhance this nuclear backscattering. Image contrast is degraded by the presence of multiple scattering in overlying cell layers. The degradation of image contrast by cell scattering depends on the scattering phase function; in vitro models which use polystyrene microspheres to approximate tissue underestimate the actual degradation caused by cell scattering. The loss in contrast can be explained using a finite difference time domain model of cellular scattering. We conclude that near real time reflected light confocal microscopy can be used to study cell morphology in vivo. Contrast degradation due to overlying tissue is a concern and cannot adequately be modeled using conventional tissue phantoms; however, acetic acid may be used to substantially increase intrinsic contrast, allowing imaging at significant depths despite distortion from overlying layers. © 1998 Society of Photo-Optical Instrumentation Engineers.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.429853DOI Listing

Publication Analysis

Top Keywords

real time
16
image contrast
16
contrast
14
confocal microscopy
12
scattering overlying
12
reflected light
12
light confocal
12
amelanotic cells
8
contrast agents
8
vivo confocal
8

Similar Publications

Laetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide.

View Article and Find Full Text PDF

Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!