A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. | LitMetric

Segmentation of the pulmonary lobes is relevant in clinical practice and particularly challenging for cases with severe diseases or incomplete fissures. In this work, an automated segmentation approach is presented that performs a marker-based watershed transformation on computed tomography (CT) scans to subdivide the lungs into lobes. A cost image for the watershed transformation is computed by combining information from fissures, bronchi, and pulmonary vessels. The lobar markers are calculated by an analysis of the automatically labeled bronchial tree. By integration of information from several anatomical structures the segmentation is made robust against incomplete fissures. For evaluation the method was compared to a recently published method on 20 CT scans with no or mild disease. The average distances to the reference segmentation were 0.69, 0.67, and 1.21 mm for the left major, right major, and right minor fissure, respectively. In addition the results were submitted to LOLA11, an international lung lobe segmentation challenge with publically available data including cases with severe diseases. The average distances to the reference for the 55 CT scans provided by LOLA11 were 0.98, 3.97, and 3.09 mm for the left major, right major, and right minor fissure. Moreover, an analysis of the relation between segmentation quality and fissure completeness showed that the method is robust against incomplete fissures.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2012.2219881DOI Listing

Publication Analysis

Top Keywords

incomplete fissures
12
segmentation pulmonary
8
pulmonary lobes
8
cases severe
8
severe diseases
8
watershed transformation
8
transformation computed
8
robust incomplete
8
average distances
8
distances reference
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!