Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus.

Parasit Vectors

Laboratório de Ultraestrutura Celular Hertha Meyer, UFRJ, Rio de Janeiro, RJ, Brazil.

Published: September 2012

Background: Usually the analysis of the various developmental stages of Trypanosoma cruzi in the experimentally infected vertebrate and invertebrate hosts is based on the morphological observations of tissue fragments from animals and insects. The development of techniques that allow the imaging of animals infected with parasites expressing luciferase open up possibilities to follow the fate of bioluminescent parasites in infected vectors.

Methods: D-luciferin (60 μg) was injected into the hemocoel of the whole insect before bioluminescence acquisition. In dissected insects, the whole gut was incubated with D-luciferin in PBS (300 μg/ml) for ex vivo bioluminescence acquisition in the IVIS® Imaging System, Xenogen.

Results: Herein, we describe the results obtained with the luciferase gene integrated into the genome of the Dm28c clone of T. cruzi, and the use of these parasites to follow, in real time, the infection of the insect vector Rhodnius prolixus, by a non- invasive method. The insects were evaluated by in vivo bioluminescent imaging on the feeding day, and on the 7 th, 14 th, 21 st and 28 th days after feeding. To corroborate the bioluminescent imaging made in vivo, and investigate the digestive tract region, the insects were dissected. The bioluminescence emitted was proportional to the number of protozoans in regions of the gut. The same digestive tracts were also macerated to count the parasites in distinct morphological stages with an optical microscope, and for bioluminescence acquisition in a microplate using the IVIS® Imaging System. A positive correlation of parasite numbers and bioluminescence in the microplate was obtained.

Conclusions: This is the first report of bioluminescent imaging in Rhodnius prolixus infected with trypomastigotes of the Dm28c-luc stable strain, expressing firefly luciferase. In spite of the distribution limitations of the substrate (D-luciferin) in the insect body, longitudinal evaluation of infected insects by bioluminescent imaging is a valuable tool. Bioluminescent imaging of the digestive tract infected with Dm28c-luc is highly sensitive and accurate method to track the fate of the parasite in the vector, in the crop, intestine and rectum. This methodology is useful to gain a better understanding of the parasite - insect vector interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481367PMC
http://dx.doi.org/10.1186/1756-3305-5-214DOI Listing

Publication Analysis

Top Keywords

bioluminescent imaging
24
rhodnius prolixus
12
bioluminescence acquisition
12
trypanosoma cruzi
8
imaging
8
ivis® imaging
8
imaging system
8
insect vector
8
digestive tract
8
bioluminescent
7

Similar Publications

Ratiometric bioluminescent detection of Cu(II) ion based on differences in enzymatic reaction kinetics of two luciferase variants.

Talanta

January 2025

Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, 565-0871, Japan; SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan. Electronic address:

Heavy metal contamination in water bodies has raised global concerns due to its significant threats to both public health and ecosystem. Copper (Cu), one of the most widely used metals, is also an essential trace element in physiological systems. Excessive intake of Cu from water can cause toxicity, potentially resulting in serious health risks.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Four-color single-molecule imaging system for tracking GPCR dynamics with fluorescent HiBiT peptide.

Biophys Physicobiol

September 2024

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

Single-molecule imaging provides information on diffusion dynamics, oligomerization, and protein-protein interactions in living cells. To simultaneously monitor different types of proteins at the single-molecule level, orthogonal fluorescent labeling methods with different photostable dyes are required. G-protein-coupled receptors (GPCRs), a major class of drug targets, are prototypical membrane receptors that have been studied using single-molecule imaging techniques.

View Article and Find Full Text PDF

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!