The correct physical basis of protobranching stabilization.

J Phys Chem A

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: October 2012

The source of the extra stability of branched hydrocarbons over unbranched (hereafter referred to as protobraching stabilization) has been explained in several different self-consistent ways. Gronert, basing his arguments on well-established properties of organic molecules, namely that geminal atoms strongly repel each other, formulated a model which accounted for this "protobranching" stability simply and very well. However, careful quantum computations were found to yield correct protobranching energies only if they properly took electron correlation into account. Such a source of stability would not have been needed in Gronert's model. The present article analyzes what is correct and what is uncertain about Gronert's atomic repulsion model, and concludes that the computations of Wiberg, Bader, Grimme, Schleyer, and their colleagues overturn Gronert's model and that bond-bond electron correlation energies provide the correct explanation of protobranching.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp308311qDOI Listing

Publication Analysis

Top Keywords

electron correlation
8
gronert's model
8
correct
4
correct physical
4
physical basis
4
basis protobranching
4
protobranching stabilization
4
stabilization source
4
source extra
4
extra stability
4

Similar Publications

Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.

View Article and Find Full Text PDF

Monolayer MoS is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!