A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transport in supported polyelectrolyte brushes. | LitMetric

Transport in supported polyelectrolyte brushes.

Acc Chem Res

Department of Chemistry, Rice University, Houston, Texas 77005, USA.

Published: November 2012

Functional polymers have a wide variety of applications ranging from energy storage to drug delivery. For energy storage applications, desirable material properties include low cost, high charge storage and/or mobility, and low rates of degradation. Isotropic thin films have been used for many of these types of applications, but research suggests that different structures such as polymer brushes can improve charge transport by an order of magnitude. Supported polymer brush structures produced by "grafting-from" polymerization methods offer a framework for a controlled study of these materials on the molecular scale. Using these materials, researchers can study the basis of hindered diffusion because they contain a relatively homogeneous polyelectrolyte membrane. In addition, researchers can use fluorescent molecular probes with different charges to examine steric and Coulombic contributions to transport near and within polymer brushes. In this Account, we discuss recent progress in using fluorescence correlation spectroscopy, single-molecule polarization-resolved spectroscopy, and a novel three-dimensional orientational technique to understand the transport of charged dye probes interacting with the strong polyanionic brush, poly(styrene sulfonate). Our preliminary experiments demonstrate that a cationic dye, Rhodamine 6G, probes the brush as a counterion, and diffusion is therefore dominated by Coulombic forces, which results in a 10,000-fold decrease in the diffusion coefficient in comparison with free diffusion. We also support our experimental results with molecular dynamics simulations. Further experiments show that, up to 50% of the time, Rhodamine 6G translates within the brush without significant rotational diffusion, which indicates a strong deviation from Fickian transport mechanisms (in which translational and rotational diffusion are related directly through parameters such as chemical potential, size, solution viscosity, and thermal properties). To understand this oriented transport, we discuss the development of an experimental technique that allows us to quantify the three-dimensional orientation on the time scale of intrabrush transport. This method allowed us to identify a unique orientational transport direction for Rhodamine 6G within the poly(styrene sulfonate) brush and to report preliminary evidence for orientational dye "hopping".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648269PMC
http://dx.doi.org/10.1021/ar3001537DOI Listing

Publication Analysis

Top Keywords

transport
8
energy storage
8
polymer brushes
8
polystyrene sulfonate
8
rotational diffusion
8
diffusion
6
brush
5
transport supported
4
supported polyelectrolyte
4
polyelectrolyte brushes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!