Electromagnetic wave propagation in Body Area Networks using the Finite-Difference-Time-Domain method.

Sensors (Basel)

Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

Published: February 2013

A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435949PMC
http://dx.doi.org/10.3390/s120709862DOI Listing

Publication Analysis

Top Keywords

human body
12
body
6
electromagnetic wave
4
wave propagation
4
propagation body
4
body area
4
area networks
4
networks finite-difference-time-domain
4
finite-difference-time-domain method
4
method rigorous
4

Similar Publications

Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).

View Article and Find Full Text PDF

The gut microbiome is a complex system that directly interacts with and influences many systems in the body. This delicate balance of microbiota plays an important role in health and disease and is highly influenced by lifestyle factors and the surrounding environment. As further research emerges, understanding the full potential of the gut microbiome and the impact of using nutraceuticals to positively influence its function may open the door to greater therapeutic outcomes in the treatment and prevention of disease.

View Article and Find Full Text PDF

Context: The impacts of elevated ketone body levels on cardiac function and hemodynamics in patients with heart failure (HF) remain unclear.

Objective: The effects of ketone intervention on these parameters in patients with HF were evaluated quantitatively in this meta-analysis.

Data Sources: We searched the PubMed, Cochrane Library, and Embase databases for relevant studies published from inception to April 13, 2024.

View Article and Find Full Text PDF

The bone tissue is a specialised connective tissue composed of several components that undergo constant remodelling. The balance between bone deposition and resorption is essential for maintaining a healthy bone structure. In case of a disruption in this remodelling process, which can lead to an imbalance between bone deposition and resorption, an increase in the opacity of a vertebral body may be observed in imaging studies, resulting in what is known as the "ivory vertebra sign".

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!