A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. | LitMetric

AI Article Synopsis

  • - The study focuses on the challenges of using EGFR-targeting agents for treating glioblastoma multiforme (GBM) due to limited clinical success despite their ability to halt tumor growth.
  • - Researchers developed and tested EGFR-specific nanobodies (ENb) and immunoconjugates that are delivered from stem cells, showing they effectively target and inhibit GBM growth and invasion in various models.
  • - SC-delivered ENb and TRAIL immunoconjugates enhanced apoptosis in GBM cells, highlighting a new and promising EGFR-targeted therapy that could have significant clinical applications.

Article Abstract

The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFR-specific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478609PMC
http://dx.doi.org/10.1073/pnas.1202832109DOI Listing

Publication Analysis

Top Keywords

stem cells
8
egfr-specific nanobodies
8
gbm
8
gbm growth
8
established primary
8
gbm cell
8
therapeutic stem
4
cells expressing
4
expressing variants
4
variants egfr-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!