RhoA plays a pivotal role in regulating cell shape and movement. Protein kinase A (PKA) inhibits RhoA signaling and thereby induces a characteristic morphological change, cell rounding. This has been considered to result from cAMP-induced phosphorylation of RhoA at Ser-188, which induces a stable RhoA-GTP-RhoGDIα complex and sequesters RhoA to the cytosol. However, few groups have shown RhoA phosphorylation in intact cells. Here we show that phosphorylation of RhoGDIα but not RhoA plays an essential role in the PKA-induced inhibition of RhoA signaling and in the morphological changes using cardiac fibroblasts. The knockdown of RhoGDIα by siRNA blocks cAMP-induced cell rounding, which is recovered by RhoGDIα-WT expression but not when a RhoGDIα-S174A mutant is expressed. PKA phosphorylates RhoGDIα at Ser-174 and the phosphorylation of RhoGDIα is likely to induce the formation of a active RhoA-RhoGDIα complex. Our present results thus reveal a principal molecular mechanism underlying G(s)/cAMP-induced cross-talk with G(q)/G(13)/RhoA signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493914PMC
http://dx.doi.org/10.1074/jbc.M112.401547DOI Listing

Publication Analysis

Top Keywords

rhoa signaling
12
phosphorylation rhogdiα
12
rhogdiα rhoa
8
rhoa plays
8
cell rounding
8
rhoa
7
phosphorylation
5
rhogdiα
5
regulation rhoa
4
signaling
4

Similar Publications

Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.

View Article and Find Full Text PDF

Doublecortin regulates the mitochondrial-dependent apoptosis in glioma via Rho-A/Net-1/p38-MAPK signaling.

Mol Med

December 2024

Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.

Doublecortin (DCX) is a microtubule-associated protein known to be a key regulator of neuronal migration and differentiation during brain development. However, the role of DCX, particularly in regulating the survival and growth of glioma cells, remains unclear. In this study, we utilized CRISPR/Cas9 technology to knock down DCX in the human glioma cell line (U251).

View Article and Find Full Text PDF

Enhanced engraftment of human haematopoietic stem cells via mechanical remodelling mediated by the corticotropin-releasing hormone.

Nat Biomed Eng

December 2024

Department of Hematology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The engraftment of haematopoietic stem and progenitor cells (HSPCs), particularly in cord-blood transplants, remains challenging. Here we report the role of the corticotropin-releasing hormone (CRH) in enhancing the homing and engraftment of human-cord-blood HSPCs in bone marrow through mechanical remodelling. By using microfluidics, intravital two-photon imaging and long-term-engraftment assays, we show that treatment with CRH substantially enhances HSPC adhesion, motility and mechanical remodelling, ultimately leading to improved bone-marrow homing and engraftment in immunodeficient mice.

View Article and Find Full Text PDF

Kif15 regulates Coro1a cell migration and phagocytosis in zebrafish after spinal cord injury.

Int Immunopharmacol

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China. Electronic address:

The role of immune cells is crucial in nerve regeneration following spinal cord injury. Kif15, a member of the kinesin family, has been shown to enhance macrophage phagocytosis. This study investigates the impact of Kif15 deficiency on immune cells in zebrafish with spinal cord injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!