A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement.

Plant Cell Physiol

Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.

Published: January 2013

Phototropins (phot1 and phot2), plant-specific blue light receptor kinases, mediate a range of physiological responses in Arabidopsis, including phototropism, chloroplast photorelocation movement, stomatal opening and leaf flattening. Phototropins consist of two photoreceptive domains at their N-terminus, LOV1 (light, oxygen or voltage 1) and LOV2, and a serine/threonine kinase domain at their C-terminus. Here, we determined the molecular moiety for the membrane association of phototropins using the yeast CytoTrap and Arabidopsis protoplast systems. We then examined the physiological significance of the membrane association of phototropins. This detailed study with serial deletions narrowed down the association domain to a relatively small part of the C-terminal domain of phototropin. The functional analysis of phot2 deletion mutants in the phot2-deficient Adiantum and Arabidopsis mutants revealed that the ability to mediate the chloroplast avoidance response correlated well with phot2's membrane association, especially with the Golgi apparatus. Taken together, our data suggest that a small part of the C-terminal domain of phototropins is necessary not only for membrane association but also for the physiological activities that elicit phototropin-specific responses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcs132DOI Listing

Publication Analysis

Top Keywords

membrane association
20
association domain
8
domain phototropin
8
association phototropins
8
small c-terminal
8
c-terminal domain
8
association
6
domain
5
phototropins
5
c-terminal membrane
4

Similar Publications

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Background: Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.

Aims: This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).

Objectives: In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC.

View Article and Find Full Text PDF

Background: Extracorporeal membrane oxygenation (ECMO) is increasingly used as a bridge to lung transplantation. Although other mechanical circulatory support devices have been associated with anti-human leukocyte antigen antibody formation, including de novo donor-specific antibodies (dnDSA), it is unknown whether ECMO is a sensitizing exposure.

Methods: This was a single-center retrospective cohort study of lung transplant recipients.

View Article and Find Full Text PDF

Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.

View Article and Find Full Text PDF

Background: Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear.

Methods: Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!