Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration.

Protein Sci

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: December 2012

Integrase is the key enzyme that mediates integration of retroviral DNA into cellular DNA which is essential for viral replication. Inhibitors of HIV-1 that target integrase recognize the nucleoprotein complexes formed by integrase and viral DNA substrate (intasomes) rather than the free enzyme. Atomic resolution structures of HIV-1 intasomes are therefore required to understand the mechanisms of inhibition and drug resistance. To date, prototype foamy virus (PFV) is the only retrovirus for which such structures have been determined. We show that PFV strand transfer complexes (STC) can be assembled on product DNA without going through the normal forward reaction pathway. The finding that a retroviral STC can be assembled in this way may provide a powerful tool to alleviate the obstacles that impede structural studies of nucleoprotein intermediates in HIV-1 DNA integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575915PMC
http://dx.doi.org/10.1002/pro.2166DOI Listing

Publication Analysis

Top Keywords

prototype foamy
8
foamy virus
8
strand transfer
8
transfer complexes
8
product dna
8
stc assembled
8
dna
6
assembly prototype
4
virus strand
4
complexes product
4

Similar Publications

Advances in foamy virus vector systems: Development and applications.

Virology

January 2025

Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea. Electronic address:

Foamy virus (FV) is a retrovirus with a safer integration profile than other retroviruses, rendering it appealing for gene therapy. Prototype FV (PFV) vector systems have been devised to yield high-titer vectors carrying large transgenes. Subsequent iterations of PFV vectors have been engineered to be replication-incompetent, enhancing their safety.

View Article and Find Full Text PDF

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution.

View Article and Find Full Text PDF

Foamy viruses (FVs) are generally recognized as non-pathogenic, often causing asymptomatic or mild symptoms in infections. Leveraging these unique characteristics, FV vectors hold significant promise for applications in gene therapy. This study introduces a novel platform technology using a pseudo-virus with single-round infectivity.

View Article and Find Full Text PDF

The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants.

View Article and Find Full Text PDF

The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!