Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enzyme rates are usually considered to be dependent on local properties of the molecules involved in reactions. However, for large molecules, distant constraints might affect reaction rates by affecting dynamics leading to transition states. In single-molecule experiments we have found that enzymes that relax DNA torsional stress display rates that depend strongly on how the distant ends of the molecule are constrained; experiments with different-sized particles tethered to the end of 10-kb DNAs reveal enzyme rates inversely correlated with particle drag coefficients. This effect can be understood in terms of the coupling between molecule extension and local molecular stresses: The rate of bead thermal motion controls the rate at which transition states are visited in the middle of a long DNA. Importantly, we have also observed this effect for reactions on unsupercoiled DNA; other enzymes show rates unaffected by bead size. Our results reveal a unique mechanism through which enzyme rates can be controlled by constraints on macromolecular or supramolecular substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478594 | PMC |
http://dx.doi.org/10.1073/pnas.1203118109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!