SF188/V+ is a highly vascular human glioma model that is based on transfection of vascular endothelial growth factor (VEGF) cDNA into SF188/V- cells. This study aims to assess its growth and vascularity properties in vivo in a rat model. Thirty-two adult rats were inoculated with SF188/V+ tumor cells, and, for comparison, five were inoculated with SF188/V- tumor cells. Several conventional magnetic resonance imaging (MRI) sequences were acquired, and several quantitative structural (T(2) and T(1)), functional [isotropic apparent diffusion coefficient (ADC) and blood flow], and molecular [protein and peptide-based amide proton transfer (APT)] MRI parameters were mapped on a 4.7 T animal scanner. In rats inoculated with SF188/V+ tumor cells, conventional T(2)-weighted images showed a highly heterogeneous tumor mass, and post-contrast T(1)-weighted images showed a heterogeneous, strong enhancement of the mass. There were moderate increases in T(2), T(1), and ADC, and large increases in blood flow and APT in the tumor, compared to contralateral brain tissue. Microscopic examination revealed prominent vascularity and hemorrhage in the VEGF-secreting xenografts as compared to controls, and immunohistochemical staining confirmed increased expression of VEGF in tumor xenografts. Our results indicate that the SF188/V+ glioma model exhibits some MRI and histopathology features that closely resemble human glioblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500409 | PMC |
http://dx.doi.org/10.1007/s11060-012-0974-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!