Dopamine is involved in food-anticipatory activity in mice.

J Biol Rhythms

Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China.

Published: October 2012

When food is available during a restricted and predictable time of the day, mammals exhibit food-anticipatory activity (FAA), an increase in locomotor activity preceding the presentation of food. Although many studies have attempted to locate the food-entrainable circadian oscillator in the central nervous system, the pathways that mediate food entrainment are a matter of controversy. The present study was designed to determine the role of dopaminergic and histaminergic systems on FAA. Mice were given access to food for 2 h (ZT12-ZT14), and FAA was defined as the locomotor activity that occurred 2 h before the availability of food. Dopamine D(1) receptor (R), D(2)R, and histamine H(1)R-specific antagonists were used to clarify the role of dopamine and histamine receptors in FAA induced by food restriction (FR). FAA was monitored by infrared locomotor activity sensors. Mice were sacrificed at ZT12 on the 14th day of FR, and monoamine concentrations were determined by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ECD). The results showed that pretreatment with the D(1)R antagonist SCH23390 at 1, 3, or 10 µg/kg significantly reduced FAA by 19% (p < 0.05), 26% (p < 0.05), or 19% (p < 0.01), respectively, and the D(2)R antagonist raclopride at 22, 67, or 200 µg/kg significantly reduced FAA by 16% (p < 0.05), 36% (p < 0.01), or 41% (p < 0.01), respectively, as compared with vehicle control. Moreover, coadministration of SCH23390 (10 µg/kg) and raclopride (200 µg/kg) synergistically inhibited FAA by 57% (p < 0.01) as compared with vehicle control. Consistently, the levels of dopamine and its metabolites in the striatum and midbrain were significantly increased during FAA, even with the pretreatment of D(1)R and D(2)R antagonists. However, pretreatment with pyrilamine at 2.5, 5, or 10 mg/kg did not significantly reduce FAA, although it reduced the locomotor activity during the dark period in ad libitum mice. These results strongly indicate that the dopaminergic system plays an essential role in the FAA in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0748730412455913DOI Listing

Publication Analysis

Top Keywords

locomotor activity
16
faa
11
food-anticipatory activity
8
faa mice
8
pretreatment d1r
8
sch23390 µg/kg
8
µg/kg reduced
8
reduced faa
8
raclopride 200
8
200 µg/kg
8

Similar Publications

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Conference report from the abstracts of the canine section at The 9th International Conference on Canine and Equine Locomotion, Utrecht 2023.

J Small Anim Pract

January 2025

Faculty of Veterinary Medicine, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands.

This conference report summarises the abstracts on canine locomotion research presented in The 9th International Conference on Canine and Equine Locomotion, discusses the most relevant literature in relation to the topics presented in the meeting and highlights the importance of canine locomotion in veterinary medicine.

View Article and Find Full Text PDF

Exploring DiPP (Diisopentyl Phthalate) Neurotoxicity and the Detoxification Process in Zebrafish Larvae - A Silent Contaminant?

Environ Res

January 2025

School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM). Electronic address:

Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!