The influence of β-cyclodextrin encapsulation on the binding of 2'-hydroxyflavanone with calf thymus DNA.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Karunya University, Coimbatore 641 114, Tamil Nadu, India.

Published: December 2012

Inclusion complexation of 2'-hydroxyflavanone (2'HF) with β-cyclodextrin (β-CD) was studied, both in solution phase and as solid inclusion complexes, by UV-visible and fluorescence spectroscopic, scanning electron microscopic and X-ray diffractometric techniques. The interaction of 2'HF with calf thymus DNA (ctDNA) in the presence and the absence of β-CD were compared. Fluorescence enhancement was observed for 2'HF due to the formation of 1:1 complex with β-CD. The structure of 1:1 complex is proposed based on spectral observation, molecular modeling and by calculated theoretical bond lengths. The possible mode of interaction between 2'HF and DNA was analyzed by molecular modeling method. The interaction of 2'HF with calf thymus DNA (ctDNA) was investigated by absorption and fluorescence measurements in the presence and the absence of β-CD as capping agent. Both in the presence and the absence of β-CD, 2'HF showed hyper-chromic effect, red shift of absorption spectra, and quenching of fluorescence due to binding of 2'HF with ctDNA. The results reveal that the phenolic moiety is involved in inclusion complexation with β-CD and interaction with DNA. In the presence of β-CD, the phenolic moiety may be included in cyclodextrin cavity, whereas the dihydrobenzopyran-4-one moiety interacts with DNA. Further, β-CD selectively blocks a part of the 2'HF molecule binding with DNA. This renders the remaining portion of the flavanone available for interaction with DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2012.08.068DOI Listing

Publication Analysis

Top Keywords

calf thymus
12
thymus dna
12
interaction 2'hf
12
presence absence
12
absence β-cd
12
dna
8
inclusion complexation
8
2'hf
8
β-cd
8
2'hf calf
8

Similar Publications

In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.

View Article and Find Full Text PDF

R - C(S) - NH - N = CH - R [R = o-OCHCH & R = CHN (2-EBP), R = o-OCHCH & R = CHNO (2-EBM), R = p-OCHCH & R = CHN (4-EBP), and R = p-OCHCH & R = CHNO (4-EBM)] have been synthesized. The ligands have been verified via various spectroscopic methods such as IR, NMR, etc. Single-crystal X-ray diffraction methods were applied to identify the structure of 4-EBP.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

Two octa-coordinated lanthanum (III) complexes of deprotonated azaphosphor β-diketon and diimine ligands, [LnLQ] (L = [ClCHC(O)NP(O)(NCH)], Q = Phen (C1) and Bipy (C2)), were synthesized and characterized by elemental analysis, IR, and NMR spectra. X-ray crystallography revealed a distorted tetragonal antiprism LaO6N2 coordination geometry around the lanthanum atom in both compounds. Nano-sized complexes (Ć1 and Ć2) were synthesized via a sonochemical process and analyzed using SEM and XRPD.

View Article and Find Full Text PDF

A series of substituted 2-(2-benzylidenehydrazinyl)benzothiazole Schiff-base derivatives and complexes containing Re(I) were synthesized and analyzed using various characterization techniques, including elemental analysis, conductance measurement, H-NMR, FT-IR, and LC-MS. The biological activities of the compounds were evaluated. Binding affinity between the complexes and calf thymus DNA (CT-DNA) was conducted using UV-visible spectroscopy, viscosity measurement, fluorescence spectroscopy, and molecular docking studies, indicating intercalation binding mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!