Hepatic mitochondrial dysfunction induced by fatty acids and ethanol.

Free Radic Biol Med

Department of Biomedical Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.

Published: December 2012

Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.024DOI Listing

Publication Analysis

Top Keywords

fatty acids
12
liver mitochondria
12
fatty liver
8
liver disease
8
mitochondrial function
8
isolated liver
8
mitochondria va-13
8
va-13 cells
8
palmitic arachidonic
8
liver
6

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

University of Georgia, College of Pharmacy, Athens, GA, USA.

Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.

View Article and Find Full Text PDF

Background: Spousal care partners to people with dementia (PWD) have a higher rate of depression and anxiety when compared to similar age controls. Previous studies have suggested a role of gut microbiota in the pathophysiology of neuropsychiatric symptoms and Alzheimer's disease (AD). Thus, our study aims to: (1) determine the presence and severity of depression and anxiety in care partners of PWD, and (2) determine the concentrations of short chain fatty acids (SCFA), which are mainly produced by gut microbiota and are important in mediating gut microbiota effects, in the blood of care partners of PWD.

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice.

Int J Biol Sci

January 2025

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!