In September 2009, the Council of the European Union adopted the Directive on Sustainable Use of Pesticides (SUD). The core idea is that in order to achieve sustainable use of pesticides, it is necessary that everyone is conscious about the risks to both human health and the environment associated with the use of plant protection products. Therefore, in the SUD, training and raising awareness play key roles in order to achieve the objectives of the directive. In this sense, the European-founded project BROWSE (Bystanders, Residents, Operators and WorkerS Exposure models for plant protection products) has, as one of its main objectives, to contribute to the implementation of the SUD through the development and dissemination of communication materials for training and raising awareness. For this reason, a consultation process was implemented involving all relevant stakeholders in order to identify their opinions regarding the subjects to be prioritised, the factors influencing pesticide exposure to be focused on and the most suitable formats to develop training and awareness-raising material as well as identification of target groups. To collect the required information, participants were asked to answer an electronic questionnaire (giving the possibility through several debates for additional comments). The collected findings and the ensuing debates are described in this article and are going to be taken into account in the development of the BROWSE training and communication material for the raising of awareness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2012.08.079 | DOI Listing |
J Agric Food Chem
December 2024
Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.
View Article and Find Full Text PDFMetabolites
November 2024
Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China.
Plant growth-promoting rhizobacteria (PGPR), particularly spp., are pivotal in enhancing plant defense mechanisms against pathogens. This study aims to investigate the metabolic reprogramming of pine needles induced by csuftcsp75 in response to the pathogen P9, evaluating its potential as a sustainable biocontrol agent.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFFront Microbiol
December 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India.
The increasing health and environmental risks associated with synthetic chemical pesticides necessitate the exploration of safer, sustainable alternatives for plant protection. This study investigates a novel biosynthesized antimicrobial peptide (AMP) from strain IT, identified as the amino acid chain PRKGSVAKDVLPDPVYNSKLVTRLINHLMIDGKRG, for its efficacy in controlling bacterial wilt (BW) disease in tomato () caused by . Our research demonstrates that foliar application of this AMP at a concentration of 200 ppm significantly reduces disease incidence by 49.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!