Transforming growth factor-β1 (TGF-β1) is a potent regulator of extracellular matrix production, wound healing, differentiation, and immune response, and is implicated in the progression of fibrotic diseases and cancer. Extracellular activation of TGF-β1 from its latent form provides spatiotemporal control over TGF-β1 signaling, but the current understanding of TGF-β1 activation does not emphasize cross talk between activators. Plasmin (PLS) and thrombospondin-1 (TSP1) have been studied individually as activators of TGF-β1, and in this work we used a systems-level approach with mathematical modeling and in vitro experiments to study the interplay between PLS and TSP1 in TGF-β1 activation. Simulations and steady-state analysis predicted a switch-like bistable transition between two levels of active TGF-β1, with an inverse correlation between PLS and TSP1. In particular, the model predicted that increasing PLS breaks a TSP1-TGF-β1 positive feedback loop and causes an unexpected net decrease in TGF-β1 activation. To test these predictions in vitro, we treated rat hepatocytes and hepatic stellate cells with PLS, which caused proteolytic cleavage of TSP1 and decreased activation of TGF-β1. The TGF-β1 activation levels showed a cooperative dose response, and a test of hysteresis in the cocultured cells validated that TGF-β1 activation is bistable. We conclude that switch-like behavior arises from natural competition between two distinct modes of TGF-β1 activation: a TSP1-mediated mode of high activation and a PLS-mediated mode of low activation. This switch suggests an explanation for the unexpected effects of the plasminogen activation system on TGF-β1 in fibrotic diseases in vivo, as well as novel prognostic and therapeutic approaches for diseases with TGF-β dysregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433618 | PMC |
http://dx.doi.org/10.1016/j.bpj.2012.06.050 | DOI Listing |
Nutr Res
January 2025
Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:
l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.
View Article and Find Full Text PDFMycobacterium tuberculosis (M.tb) infection can lead to various outcomes, including active tuberculosis or latent tuberculosis infection (LTBI). Household contacts of TB cases have a high risk of acquiring LTBI.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!