A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways. | LitMetric

Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: catalytic performance and reaction pathways.

J Hazard Mater

Laboratório de Catálise e Materiais (LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

Published: November 2012

Two carbon materials (multi-walled carbon nanotubes, MWCNTs, and activated carbon) were investigated as ozonation catalysts for the mineralization of the antibiotic sulphamethoxazole (SMX). MWCNTs presented a higher catalytic performance than activated carbons, which was justified by their differences in surface chemistry and by the higher internal mass transfer resistances expected for activated carbons. 3-Amino-5-methylisoxazole and p-benzoquinone were detected as primary products of single and catalytic ozonation of SMX, whereas oxamic, oxalic, pyruvic and maleic acids were identified as refractory final oxidation products. The original sulphur of the SMX was almost completely converted to sulphate and part of the nitrogen was converted to NH4+ and NO3-. The presence of the radical scavenger tert-butanol during catalytic and single ozonation evidenced the participation of HO radicals in the oxidation mechanisms of SMX, especially in the mineralization of several intermediates. Microtox tests revealed that simultaneous use of ozone and MWCNTs originated lower acute toxicity. The time course of all detected compounds was studied and the transformation pathway for the complete mineralization of SMX by single and catalytic ozonation in the presence of the selected materials was elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.08.057DOI Listing

Publication Analysis

Top Keywords

catalytic ozonation
12
carbon materials
8
catalytic performance
8
activated carbons
8
single catalytic
8
catalytic
6
smx
5
ozonation sulphamethoxazole
4
sulphamethoxazole presence
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!