Anoikis has been recognized as a potential target for anticancer therapy. Polygonum cuspidatum (Huzhang) is a frequently used Chinese herb in hepatocarcinoma. In present study, we evaluated the effects of Polygonum cuspidatum extract (PCE) in hepatocarcinoma cells in suspension. The results showed that PCE inhibited the proliferation of hepatocarcinoma cells in suspension in a dose- and time-dependent manner. PCE also inhibited anchorage-independent growth of hepatocarcinoma cells in soft agar. PCE induced anoikis in human hepatocarcinoma Bel-7402 cells accompanied by caspase-3 and caspase-9 activation and poly(ADP-ribose) polymerase cleavage, which was completely abrogated by a pan caspase inhibitor, Z-VAD-FMK. In addition, PCE treatment induced intracellular reactive oxygen species (ROS) production in Bel-7402 cells. NAC, an ROS scavenger, partially attenuated PCE-induced anoikis and activation of caspase-3 and caspase-9. Furthermore, PCE inhibited expression of focal adhesion kinase (FAK) in Bel-7402 cells. Overexpression of FAK partially abrogated PCE-induced anoikis. These data suggest that PCE may inhibit suspension growth and induce caspase-mediated anoikis in hepatocarcinoma cells and may relate to ROS generation and FAK downregulation. The present study provides new insight into the application of Chinese herb for hepatocarcinoma treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449140 | PMC |
http://dx.doi.org/10.1155/2012/607675 | DOI Listing |
Biochem Biophys Rep
March 2025
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China.
Background: Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment.
Methods: Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated.
ACS Omega
December 2024
Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China.
: To assess the anticancer effect of microbubbles (MBs) in combination with sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy (SDT) for the in vitro and in vivo treatment of hepatocellular carcinoma (HCC). : HepG2 cells were used for in vitro experiments. Reactive oxygen species (ROS) production was detected using 2',7'-dichlorodihydrofluorescein diacetate and singlet oxygen sensor green in vitro and in solution, respectively.
View Article and Find Full Text PDFFront Nutr
December 2024
School of Public Health, Shandong Second Medical University, Weifang, China.
Introduction: Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1).
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China.
Hepatocellular carcinoma (HCC) is the most common and highly aggressive tumor in the world. Although immunotherapy, surgical resection, targeted therapy and HCC transplantation could improve the prognosis for HCC patients, the tumor recurrence rate of the tumor remains high due to its insidious and invasive nature. Therefore, the development of new HCC therapeutic agents has become particularly important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!