Background: Phosphoinositide 3-kinase γ (PI3Kγ) signaling engaged by β-adrenergic receptors is pivotal in the regulation of myocardial contractility and remodeling. However, the role of PI3Kγ in catecholamine-induced arrhythmia is currently unknown.

Methods And Results: Mice lacking PI3Kγ (PI3Kγ(-/-)) showed runs of premature ventricular contractions on adrenergic stimulation that could be rescued by a selective β(2)-adrenergic receptor blocker and developed sustained ventricular tachycardia after transverse aortic constriction. Consistently, fluorescence resonance energy transfer probes revealed abnormal cAMP accumulation after β(2)-adrenergic receptor activation in PI3Kγ(-/-) cardiomyocytes that depended on the loss of the scaffold but not of the catalytic activity of PI3Kγ. Downstream from β-adrenergic receptors, PI3Kγ was found to participate in multiprotein complexes linking protein kinase A to the activation of phosphodiesterase (PDE) 3A, PDE4A, and PDE4B but not of PDE4D. These PI3Kγ-regulated PDEs lowered cAMP and limited protein kinase A-mediated phosphorylation of L-type calcium channel (Ca(v)1.2) and phospholamban. In PI3Kγ(-/-) cardiomyocytes, Ca(v)1.2 and phospholamban were hyperphosphorylated, leading to increased Ca(2+) spark occurrence and amplitude on adrenergic stimulation. Furthermore, PI3Kγ(-/-) cardiomyocytes showed spontaneous Ca(2+) release events and developed arrhythmic calcium transients.

Conclusions: PI3Kγ coordinates the coincident signaling of the major cardiac PDE3 and PDE4 isoforms, thus orchestrating a feedback loop that prevents calcium-dependent ventricular arrhythmia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913165PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.114074DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
pi3kγ-/- cardiomyocytes
12
phosphoinositide 3-kinase
8
ventricular arrhythmia
8
kinase a-mediated
8
β-adrenergic receptors
8
adrenergic stimulation
8
β2-adrenergic receptor
8
cav12 phospholamban
8
pi3kγ
6

Similar Publications

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.

View Article and Find Full Text PDF

Investigating intrauterine exposure to methamphetamine on serine-threonine kinase pathway in male rat testis.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

Today, methamphetamine (METH) is being used by adolescents and young adults. Our previous research demonstrated that intrauterine exposure to METH induces apoptosis in testicles and seminiferous tubes. However, based on available literature, the mechanism of this effect remains unidentified.

View Article and Find Full Text PDF

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis.

Clin Transl Med

January 2025

Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.

Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.

Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!