Development of a refined tenocyte expansion culture technique for tendon tissue engineering.

J Tissue Eng Regen Med

General Surgery Department, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

Published: December 2014

The aim of this study was to efficiently expand less differentiated tenocytes with minimum use of fetal bovine serum (FBS) for tenocyte-based tendon tissue engineering. To achieve this goal, human tenocytes were cultured in different concentrations of FBS and combinations of growth factors PDGF(BB), IGF-1 and bFGF. A number of growth factors were selected that could support tenocyte expansion at reduced differentiated state with minimum FBS usage. Results showed that the expansion of the tenocytes cultured for 14 days with 1% FBS, 50 ng/ml PDGF(BB) and 50 ng/ml bFGF was similar to that cultured in the 10% FBS control group. The tenocytes cultured in the treatment group showed significantly lower collagen synthesis and down-regulation of mRNA expression of tendon differentiation markers. Cell morphology confirmed that tenocytes cultured in the growth factors had reduced collagen fibril formation compared to tenocytes cultured in 10% FBS. Our findings confirm the feasibility of inducing human tenocyte expansion in vitro with the least amount of FBS usage, while controlling their differentiation until required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.1597DOI Listing

Publication Analysis

Top Keywords

tenocytes cultured
20
tenocyte expansion
12
growth factors
12
tendon tissue
8
tissue engineering
8
fbs usage
8
cultured 10%
8
10% fbs
8
fbs
7
tenocytes
6

Similar Publications

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

The first set of data refers to Insulin-like Growth Factor-1 (IGF-1) protein incorporation via emulsion electrospinning into a DegraPol random fiber mesh and its characterization. Specifically, the fiber thickness was assessed and compared to pure DegraPol fibers without IGF-1 (control). Furthermore, the mechanical properties of these meshes were assessed and data on ultimate tensile stress, Young's modulus and ultimate fracture strain are presented for ring specimen and rectangular pieces taken from electrospun tubes in the transverse direction as well as rectangular pieces taken in the axial direction of the electrospun tube.

View Article and Find Full Text PDF

iTRAQ-Based Proteomic Analysis of Spontaneous Achilles Tendon Rupture.

J Proteome Res

November 2024

Department of Osteopathy and Orthopedics (Ankle) Surgery, The Sixth Teaching Hospital of Xinjiang Medical University, No. 39 Wuxing South Road, Urumqi 830001, Xinjiang Uygur Autonomous Region, China.

Article Synopsis
  • Spontaneous Achilles tendon rupture (SATR) mainly affects older adults with chronic injuries, but its cause and treatment options are still unclear.
  • A study used iTRAQ proteomics to identify 2432 proteins in SATR patients, highlighting 307 differentially expressed proteins linked to key biological pathways, including those related to COVID-19 and extracellular matrix organization.
  • Important proteins such as fibronectin and collagen types were found to be significantly affected in SATR tissues, indicating potential targets for improving diagnosis and treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how synovial fluid from the shoulder affects umbilical cord-derived mesenchymal stem cells (SF-UC-MSCs) and their potential role in treating tendinopathy.
  • Specifically, it looks at the impact of these stem cells on tenocytes (cells in tendons) from patients with degenerative rotator cuff tears under inflammatory conditions induced by interleukin-1β (IL-1β).
  • Results show that SF-UC-MSCs conditioned media reduces inflammation in tenocytes while promoting the expression of protective growth factors, suggesting a promising therapeutic avenue for tendon injuries.
View Article and Find Full Text PDF

Background: Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!