We report the piezoelectric and ferroelectric properties of individual one-dimensional objects made of Bi(4)Ti(3)O(12) (BiT). The nanorods and nanowires investigated in this study were fabricated by a two-step process: 1) preparation of reactive templates using hydrothermal-like synthesis and colloidal chemistry and 2) transformation of the reactive templates in Bi(4)Ti(3)O(12) by solid-state reaction, overcoming the morphological instability problem of 1-D templates. Using piezoresponse force microscopy (PFM) with both out-of-plane and in-plane detection capability, we show that both types of objects exhibit strong piezoelectric activity and good switching ferroelectric behavior. Analysis of the PFM hysteresis loops obtained revealed that the coercive voltage of the in-plane PFM signal can be either equal to or different from that of the out-of-plane response. We associate these situations with two types of polarization switching mechanisms: direct 180° switching, and via rotation of polarization, resulting from the independent switching of the components along the a- and ccrystallographic axes. In a few instances, we observe a negative piezoelectric coefficient, which we explain by the specific shape of the piezoelectric surface of Bi(4)Ti(3)O(12).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2012.2405 | DOI Listing |
Redox Biol
December 2024
Department of Chemistry, Brown University, Providence, RI, 02912, USA. Electronic address:
Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors.
View Article and Find Full Text PDFSmall
December 2024
Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
To move beyond an energy economy dominated by fossil fuel utilization, high-performance electrochemical cells must be designed for energy storage and conversion. Selective etching is a promising, cost-effective solution-processing method for the large-scale top-down production of nanomaterials for high-performance electrodes. This review outlines general methodologies and mechanisms by which selective etching can be applied to create nanomaterials, including various template-assisted, facet-selective, and electrochemical methods, as well as in-depth case studies of state-of-the-art research involving selectively etched nanomaterials for electrocatalytic and energy storage applications.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
In Nature, the four-electron reduction of O is catalyzed at preorganized multimetallic active sites. These complex active sites often feature low-coordinate, redox-active metal centers precisely positioned to facilitate rapid O activation processes that obviate the generation of toxic, partially reduced oxygen species. Very few biomimetic constructs simultaneously recapitulate the complexity and reactivity of these biological cofactors.
View Article and Find Full Text PDFNanoscale
December 2024
Key Laboratory of Advanced Energy Storage and Conversion of Wenzhou, Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
Lead oxides (PbO, 1 ≤ ≤ 2) are promising high-capacity and low-cost anodes for lithium ion batteries (LIBs). However, the huge lithiation-induced volume expansion of conventional large-sized PbO particles leads to severe electrode pulverization with poor cycling stability. Herein, a rare mixed-valence PbO with a unique hierarchical architecture of nanoparticle-assembled interconnected hollow spheres (denoted PbO NAHSs) is crafted by introducing polyvinylpyrrolidone (PVP) into the solution of generating β-PbO microspheres (MSs), which is exploited for the first time as a potential advanced anode material for LIBs.
View Article and Find Full Text PDFFront Microbiol
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
Compared to quantitative real-time PCR (q-PCR), CRISPR-Cas-mediated technology is more suitable for point-of-care testing (POCT) and has potential for wider application in the future. Generally, the operational procedure of CRISPR-Cas-mediated diagnostic method consists of two independent steps, the reaction of signal amplification and the CRISPR-Cas-mediated signal detection. Complex multi-step procedures can easily lead to cross-contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!