The operculo-insular cortex has been recently pointed out to be the main area of the pain matrix to be involved in the integration of pain intensity. This fMRI study specified the pattern of response to laser stimuli by focusing on this cortical area, by optimizing the temporal sampling and by investigating pain-related differences in the amplitudes and latencies of the BOLD responses. Canonical and temporal derivative hemodynamic response function (HRF) and finite impulse response (FIR) modeling provided consistent results. Amplitude of BOLD response discriminated painful from non-painful conditions in posterior and mid-insular cortices, bilaterally. Pain conditions were characterized by a shortened latency (as compared to non-painful conditions) in the anterior insula. In the functional organization of the insula, these results suggest a double dissociation that can be summarized as the 'where' and the 'when' of the BOLD response to pain. These results suggest that differences in the amplitude of the BOLD activity in the posterior and in the mid-insular cortices as well as shortened latency of the response in the anterior insula deal with discriminative processes related to painful conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2012.09.038 | DOI Listing |
Proc Biol Sci
January 2025
Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Invalidenstr 43, Berlin 10115, Germany.
Vocalizations play a crucial role in the social systems of many animals and may inadvertently reveal behavioural characteristics of the sender. Bats, the second largest mammalian order, rely extensively on vocalizations owing to their nocturnal lifestyle and complex social systems, making them ideal for studying links between vocalizations and consistent behavioural traits. In this study, we developed a new testing regime to investigate whether consistent individual vocalization differences in nectarivorous bats are associated with specific behavioural types.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.
View Article and Find Full Text PDFThe complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.
View Article and Find Full Text PDFNeuroimaging methods rely on models of neurovascular coupling that assume hemodynamic responses evolve seconds after changes in neural activity. However, emerging evidence reveals noncanonical BOLD (blood oxygen level dependent) responses that are delayed under stress and aberrant in neuropsychiatric conditions. To investigate BOLD coupling to resting-state fluctuations in neural activity, we simultaneously recorded EEG and fMRI in people with schizophrenia and psychiatrically unaffected participants.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!