Intolerance to fava beans in subjects with glucose-6-phosphate-dehydrogenase deficiency (favism) may lead to severe hemolytic crises and decreased renal function. Renal biopsy findings exploring the molecular mechanisms of renal damage in favism have not been previously reported. We report a case of favism-associated acute kidney injury in which renal biopsy showed acute tubular necrosis and massive iron deposits in tubular cells. Interestingly, iron deposit areas were characterized by the presence of oxidative stress markers (NADPH-p22 phox and heme-oxigenase-1) and macrophages expressing the hemoglobin scavenger receptor CD163. In addition, iron deposits, NADPH-p22 phox, hemeoxigenase- 1 and CD163 positive cells were observed in some glomeruli. These results identify both glomerular and tubular involvement in favism-associated acute kidney injury and suggest novel therapeutic targets to prevent or accelerate recovery from acute kidney injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5414/CN107520 | DOI Listing |
Am J Cardiovasc Drugs
January 2025
Pediatric Nephrology, State University of Campinas, São Paulo, Brazil.
Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2024
Cardiosurgical Intensive Care Unit, Dupuytren II Hospital, University Teaching Hospital of Limoges, Limoges, France; University of Limoges, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France.
Biomaterials
December 2024
Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address:
Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.
View Article and Find Full Text PDFClin Respir J
January 2025
Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
Introduction: Bronchiectasis exacerbation (BE) is associated with unfavorable sequelae in other organs such as the cardiovascular system; data regarding its impact on adverse term renal outcomes, however, is lacking.
Methods: A territory-wide retrospective cohort study was conducted in Hong Kong between 1/1/1993 and 31/12/2017. All patients with bronchiectasis followed in the public healthcare system in 2017 were classified as "Exacerbators" or "Non-Exacerbators," and their adverse renal outcomes (renal progression [decrease in eGFR by 30 mL/min lasted for more than 12 months during follow up], acute kidney injury [AKI], and annual rate of eGFR decline) in the ensuing 7 years were compared.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!