We have fabricated PbTiO3/SrRuO3 superlattices with ultrathin SrRuO3 layers. Because of the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the concentration of PbTiO3, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The results are significant as they represent a new class of ferroelectric superlattices, with a rich and complex phase diagram. By expanding our set of materials we are able to introduce new behaviors that can only occur when one of the materials is not a perovskite titanate. Here, compositional inversion symmetry breaking in bicolor superlattices, due to the combined variation of A and B site ions within the superlattice, is demonstrated using a combination of experimental measurements and first principles density functional theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.067601 | DOI Listing |
Science
January 2025
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses.
View Article and Find Full Text PDFNanoscale
January 2025
Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.
View Article and Find Full Text PDFUsing the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ronin Institute, Montclair, New Jersey 07043, USA.
The Rashba effect in a nonmagnetic condensed-matter system is described by the reduction of point-group symmetries. The inversion, two-fold rotation, and reflection symmetries transforming the wavevector to - are identified as the origin of a degenerate state according to the time-reversal symmetry. The lack of these symmetries in a bulk system or the breaking of these in a surface system is then identified as the origin of a nondegenerate state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!