We experimentally demonstrate the efficient channeling of fluorescence photons from single q dots on optical nanofiber into the guided modes by measuring the photon-count rates through the guided and radiation modes simultaneously. We obtain the maximum channeling efficiency to be 22.0(±4.8)% at a fiber diameter of 350 nm for the emission wavelength of 780 nm. The results may open new possibilities in quantum information technologies for generating single photons into single-mode optical fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.063602 | DOI Listing |
J Chromatogr A
January 2025
Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.
View Article and Find Full Text PDFMicroscopy (Oxf)
January 2025
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
The distribution of dopants in host crystals significantly influences the chemical and electronic properties of materials. Therefore, determining this distribution is crucial for optimizing material performance. The previously developed statistical ALCHEMI (St-ALCHEMI), an extension of the atom-location by channeling-enhanced microanalysis (ALCHEMI) technique, utilizes variations in electron channeling based on the beam direction relative to the crystal orientation.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China.
Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.
View Article and Find Full Text PDFBMC Psychol
December 2024
School of Economics and Management, Weifang University of Science and Technology, Shandong, 262700, China.
Background: The Chinese educational sector is dynamic; hence, there is a need to anchor the factors that influence faculty job satisfaction and performance. These are channeled through organizational climate (OrgC) and employee happiness (EmH). The growing integration of artificial intelligence applications (AIAs)-like ChatGPT-into the learning environment raises questions about AIAs' moderating role in the relationship between EmH at work and EJoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!