A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Emergence of patterns in random processes. | LitMetric

Emergence of patterns in random processes.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA.

Published: August 2012

Sixty years ago, it was observed that any independent and identically distributed (i.i.d.) random variable would produce a pattern of peak-to-peak sequences with, on average, three events per sequence. This outcome was employed to show that randomness could yield, as a null hypothesis for animal populations, an explanation for their apparent 3-year cycles. We show how we can explicitly obtain a universal distribution of the lengths of peak-to-peak sequences in time series and that this can be employed for long data sets as a test of their i.i.d. character. We illustrate the validity of our analysis utilizing the peak-to-peak statistics of a Gaussian white noise. We also consider the nearest-neighbor cluster statistics of point processes in time. If the time intervals are random, we show that cluster size statistics are identical to the peak-to-peak sequence statistics of time series. In order to study the influence of correlations in a time series, we determine the peak-to-peak sequence statistics for the Langevin equation of kinetic theory leading to Brownian motion. To test our methodology, we consider a variety of applications. Using a global catalog of earthquakes, we obtain the peak-to-peak statistics of earthquake magnitudes and the nearest neighbor interoccurrence time statistics. In both cases, we find good agreement with the i.i.d. theory. We also consider the interval statistics of the Old Faithful geyser in Yellowstone National Park. In this case, we find a significant deviation from the i.i.d. theory which we attribute to antipersistence. We consider the interval statistics using the AL index of geomagnetic substorms. We again find a significant deviation from i.i.d. behavior that we attribute to mild persistence. Finally, we examine the behavior of Standard and Poor's 500 stock index's daily returns from 1928-2011 and show that, while it is close to being i.i.d., there is, again, significant persistence. We expect that there will be many other applications of our methodology both to interoccurrence statistics and to time series.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.86.026103DOI Listing

Publication Analysis

Top Keywords

time series
16
statistics
10
peak-to-peak sequences
8
peak-to-peak statistics
8
peak-to-peak sequence
8
sequence statistics
8
statistics time
8
iid theory
8
consider interval
8
interval statistics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!