Motor proteins actively contract the actin cytoskeleton of cells and thereby give rise to nonequilibrium fluctuations as well as changes in the architecture of the cytoskeleton. Here, we show, by video microrheology of a reconstituted cytoskeleton, that motors generate time-dependent nonequilibrium fluctuations, which evolve as the network is remodeled. At earlier times, the fluctuation spectrum is dominated by strong non-Gaussian fluctuations, which arise from large displacements. At later times, directed displacements are infrequent and finally disappear. We show that these effects are due to contractile coarsening of the network into large actin-myosin foci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.020901 | DOI Listing |
Phys Rev Lett
December 2024
School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
It is well established that the long-range van der Waals or thermal Casimir interaction between two semi-infinite dielectrics separated by a distance H is screened by an intervening electrolyte. Here we show how this interaction is modified when an electric field of strength E is applied parallel to the dielectric boundaries, leading to a nonequilibrium steady state with a current. The presence of the field induces a long-range thermal repulsive interaction, scaling just like the thermal Casimir interaction between dielectrics without the intervening electrolyte, i.
View Article and Find Full Text PDFPhys Rev E
November 2024
Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Turin, Italy.
The physical significance of the stochastic processes associated to the generalized Gibbs ensembles is scrutinized here with special attention to the thermodynamic fluctuations of small systems. Differently from the so-called stochastic thermodynamics, which starts from stochastic versions of the first and second law of thermodynamics and associates thermodynamic quantities to microscopic variables, here we consider stochastic variability directly in the macroscopic variables. By recognizing the potential structure of the Gibbs ensembles, when expressed as a function of the potential entropy generation, we obtain exact nonlinear thermodynamic Langevin equations (TLEs) for macroscopic variables, with drift expressed in terms of entropic forces.
View Article and Find Full Text PDFPhys Rev E
November 2024
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
Systems of oscillators subject to time-dependent noise typically achieve synchronization for long times when their mutual coupling is sufficiently strong. The dynamical process whereby synchronization is reached can be thought of as a growth process in which an interface formed by the local phase field gradually roughens and eventually saturates. Such a process is here shown to display the generic scale invariance of the one-dimensional Kardar-Parisi-Zhang universality class, including a Tracy-Widom probability distribution for phase fluctuations around their mean.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
The statistical mechanics of equilibrium interfaces has been well-established for over a half century. In the past decade, a wealth of observations have made increasingly clear that a new perspective is required to describe interfaces arbitrarily far from equilibrium. In this work, beginning from microscopic particle dynamics that break time-reversal symmetry, we derive the linear interfacial dynamics of coexisting motility-induced phases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany.
Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!