We introduce the idea of transformation trajectories to describe the evolution of nematic shells in terms of defect locations and director field when the elastic anisotropy and the shell thickness heterogeneity vary. Experiments are compared to numerical results to clarify the exact role played by these two parameters. We demonstrate that heterogeneity in thickness is a result of a symmetry breaking initiated by buoyancy and enhanced by liquid crystal elasticity, and is irrespective of the elastic anisotropy. In contrast, elastic anisotropy--in particular, disfavored bend distortion--drives an asymmetric defect reorganization. These shell states can be both stable or metastable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.020705 | DOI Listing |
Proc Inst Mech Eng H
January 2025
Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India.
Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: Stiffening of the large elastic arteries is an emerging age-related risk factor for Alzheimer's disease (AD) and related dementia (ADRD). Arterial stiffness is associated with pathological changes underlying AD/ADRD, and total arterial stiffness (T-PWV) can be subdivided into two main mechanisms. Structural stiffening (S-PWV) is due to intrinsic remodeling of the artery wall, and load-dependent stiffening (LD-PWV) is due to increased blood pressure without intrinsic changes to the artery wall.
View Article and Find Full Text PDFSci Rep
January 2025
ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland.
High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Kotelnikov Institute of Radio Engineering and Electronics of RAS, Moscow 125009, Russia.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!