Discontinuous percolation transitions and the associated tricritical points are manifest in a wide range of both equilibrium and nonequilibrium cooperative phenomena. To demonstrate this, we present and relate the continuous and first-order behaviors in two different classes of models: The first are generalized epidemic processes that describe in their spatially embedded version--either on or off a regular lattice--compact or fractal cluster growth in random media at zero temperature. A random graph version of these processes is mapped onto a model previously proposed for complex social contagion. We compute detailed phase diagrams and compare our numerical results at the tricritical point in d = 3 with field theory predictions of Janssen et al. [Phys. Rev. E 70, 026114 (2004)]. The second class consists of exponential ("Hamiltonian," i.e., formally equilibrium) random graph models and includes the Strauss and the two-star model, where "chemical potentials" control the densities of links, triangles, or two-stars. When the chemical potentials in either graph model are O(logN), the percolation transition can coincide with a first-order phase transition in the density of links, making the former also discontinuous. Hysteresis loops can then be of mixed order, with second-order behavior for decreasing link fugacity, and a jump (first order) when it increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.86.011128 | DOI Listing |
Phys Rev E
September 2024
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
Phys Rev E
August 2024
Center for Complex Systems, KI of Grid Modernization, Korea Institute of Energy Technology, Naju, Jeonnam 58330, Korea.
A hidden state in which a spin does not interact with any other spin contributes to the entropy of an interacting spin system. We explore the q-state Potts model with extra r hidden states using the Ginzburg-Landau formalism in the mean-field limit. We analytically demonstrate that when 1 View Article and Find Full Text PDF
Proc Natl Acad Sci U S A
August 2024
Department of Physics, University of California San Diego, La Jolla, CA 92093.
Electrical triggering of a metal-insulator transition (MIT) often results in the formation of characteristic spatial patterns such as a metallic filament percolating through an insulating matrix or an insulating barrier splitting a conducting matrix. When MIT triggering is driven by electrothermal effects, the temperature of the filament or barrier can be substantially higher than the rest of the material. Using X-ray microdiffraction and dark-field X-ray microscopy, we show that electrothermal MIT triggering leads to the development of an inhomogeneous strain profile across the switching device, even when the material does not undergo a pronounced, discontinuous structural transition coinciding with the MIT.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.
Directed percolation (DP), a universality class of continuous phase transitions, has recently been established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or planar flows, the transition occurs via discrete large-scale turbulent structures, known as puffs in pipe flow or bands in planar flows, which either self-replicate or laminarize. However, these processes might not be universal to all subcritical shear flows.
View Article and Find Full Text PDFSci Rep
June 2024
Naval Research Laboratory, Code 7130, Washington, DC, 20375, USA.
Experiments on ultrasound propagation through a gel doped with resonant encapsulated microbubbles provided evidence for a discontinuous transition between wave propagation regimes at a critical excitation frequency. Such behavior is unlike that observed for soft materials doped with non-resonant air or through liquid foams, and disagrees with a simple mixture model for the effective sound speed. Here, we study the discontinuous transition by measuring the transition as a function of encapsulated microbubble volume fraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!