Generalized fluctuation relation for power-law distributions.

Phys Rev E Stat Nonlin Soft Matter Phys

Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Avenida E Bustillo Km 9.5, 8400 Bariloche, Argentina.

Published: July 2012

AI Article Synopsis

Article Abstract

Strong violations of existing fluctuation theorems may arise in nonequilibrium steady states characterized by distributions with power-law tails. The ratio of the probabilities of positive and negative fluctuations of equal magnitude behaves in an anomalous nonmonotonic way [H. Touchette and E. G. D. Cohen, Phys. Rev. E 76, 020101(R) (2007)]. Here, we propose an alternative definition of fluctuation relation (FR) symmetry that, in the power-law regime, is characterized by a monotonic linear behavior. The proposal is consistent with a large deviationlike principle. As an example, we study the fluctuations of the work done on a dragged particle immersed in a complex environment able to induce power-law tails. When the environment is characterized by spatiotemporal temperature fluctuations, distributions arising in nonextensive statistical mechanics define the work statistics. In that situation, we find that the FR symmetry is solely defined by the average bath temperature. The case of a dragged particle subjected to a Lévy noise is also analyzed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.86.011109DOI Listing

Publication Analysis

Top Keywords

fluctuation relation
8
power-law tails
8
dragged particle
8
generalized fluctuation
4
power-law
4
relation power-law
4
power-law distributions
4
distributions strong
4
strong violations
4
violations existing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!