Direct calculation of the lattice Green function with arbitrary interactions for general crystals.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Published: June 2012

Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.066706DOI Listing

Publication Analysis

Top Keywords

lattice green
16
green function
16
calculation lattice
8
general crystals
8
crystals arbitrary
8
lattice
5
direct calculation
4
green
4
function
4
function arbitrary
4

Similar Publications

High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.

View Article and Find Full Text PDF

Developing durably active catalysts to tackle harsh voltage polarization and seawater corrosion is pivotal for efficient solar-to-hydrogen (STH) conversion, yet remains a challenge. We report a durably active catalyst of NiCr-layered double hydroxide (RuldsNiCr-LDH) with highly exposed Ni-O-Ru units, in which low-loading Ru (0.32 wt%) is locked precisely at defect lattice site (Rulds) by Ni and Cr.

View Article and Find Full Text PDF

Vanadium-based materials, which offer multiple oxidation states and rich redox reactions in zinc-ion batteries (ZIBs), have gained substantial attention. However, achieving green and efficient preparation of vanadium oxides-based materials featured with a controlled content of different heterovalent vanadium remains a significant challenge. Herein, a vanadium-supramolecular flower-shaped material (VSF) with heterovalent vanadium was prepared using NHVO as vanadium metal center and hexamethylenetetramine as organic ligand in aqueous solution.

View Article and Find Full Text PDF

Laser-driven projection displays face a critical challenge in developing laser-excitable and high-performance narrowband green emitters. Herein, new AlO-LaMgAlO: Mn (AlO-LMA: Mn) transparent composite ceramics are reported via high-temperature vacuum sintering, which produces a high-color-purity (95.4%) green emission with full width at half maximum of 24 nm and superior thermal and moisture and laser irradiation stability.

View Article and Find Full Text PDF

Boosting Anionic Redox Reactions of Li-Rich Cathodes through Lattice Oxygen and Li-Ion Kinetics Modulation in Working All-Solid-State Batteries.

Adv Mater

December 2024

Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

The use of lithium-rich manganese-based oxides (LRMOs) as the cathode in all-solid-state batteries (ASSBs) holds great potential for realizing high energy density over 600 Wh kg. However, their implementation is significantly hindered by the sluggish kinetics and inferior reversibility of anionic redox reactions of oxygen in ASSBs. In this contribution, boron ions (B) doping and 3D LiBO (LBO) ionic networks construction are synchronously introduced into LRMO materials (LBO-LRMO) by mechanochemical and subsequent thermally driven diffusion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!