Ordered packing of elastic wires in a sphere.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan 45137-6673, Iran.

Published: June 2012

In this paper we study the ordered packing of wires in a sphere. We propose an analytical model and compare the model predictions with the results of our experiments and simulations for the maximum packing fraction, the number of formed coils, the fractal dimension, and bending energy. We show that the relative system size [i.e., the ratio of the wire radius to the sphere radius (a/R)] is the most important control parameter for the maximum packing fraction. We find that the number of coils obeys a power-law relation of the form N∼(R/a){1.5} and the fractal dimension of the structures is 2.5, independent of the system size. Our theoretical results are in good agreement with the experimental data and the predictions of the numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.061108DOI Listing

Publication Analysis

Top Keywords

ordered packing
8
wires sphere
8
maximum packing
8
packing fraction
8
fractal dimension
8
system size
8
packing elastic
4
elastic wires
4
sphere paper
4
paper study
4

Similar Publications

Modification of Liposomal Properties by an Engineered Gemini Surfactant.

Langmuir

January 2025

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.

View Article and Find Full Text PDF

We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, , on the effective volume fraction, , is virtually identical to a monolithic Flory material, the shear modulus, , behaves in a non-trivial way. increases monotonically with from zero and remains below about 80% of the monolithic Flory value at the largest we study here.

View Article and Find Full Text PDF

The elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of -benzodipyrrole (-BDP)-based A-DBD-A-type NFAs. In this work, two new A-DBD-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the -BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

This study investigated the adsorptive properties of functionalized fabric containing dimethylaminomethyl calix[4]arene (DMAM-Calix) to remove anionic methyl orange (MO) and cationic Rhodamine B (RhB) dyes in aqueous media. Adsorption studies were performed using a filtration system packed with DMAM-Calix-functionalized fabric (). The results revealed that the cationic and anionic structures work compatibly in a binary mixture medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!