Natural inflation on a steep potential with classical non-Abelian gauge fields.

Phys Rev Lett

Kavli Institute for Cosmological Physics, Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA.

Published: June 2012

AI Article Synopsis

Article Abstract

We propose a model for inflation consisting of an axionic scalar field coupled to a set of three non-Abelian gauge fields. Our model's novel requirement is that the gauge fields begin inflation with a rotationally invariant vacuum expectation value (VEV) that is preserved through identification of SU(2) gauge invariance with rotations in three dimensions. The gauge VEV interacts with the background value of the axion, leading to an attractor solution that exhibits slow roll inflation even when the axion decay constant has a natural value (

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.261302DOI Listing

Publication Analysis

Top Keywords

gauge fields
12
non-abelian gauge
8
gauge
5
natural inflation
4
inflation steep
4
steep potential
4
potential classical
4
classical non-abelian
4
fields propose
4
propose model
4

Similar Publications

As photobiomodulation is growing in the dental field the aim of this prospective, two-arm clinical trial was to assess the radiographic changes for chronic periapical bone lesions related to mandibular molars after primary root canal therapy with or without applying Diode laser on soft tissue. The samples were randomly divided into a Laser group and a mock laser (ML) group. Preoperative CBCT images were compared 12 months later with postoperative CBCT to gauge the changes in the volume of the bony lesion by two observers.

View Article and Find Full Text PDF

A Fully Printable Strain Sensor Enabling Highly-Sensitive Wireless Near-Field Interrogation.

Adv Sci (Weinh)

January 2025

Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.

View Article and Find Full Text PDF

CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids.

Brain Inform

January 2025

Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.

Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns.

View Article and Find Full Text PDF

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!